首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Circadian rhythms influence a variety of physiological and behavioral processes; however, little is known about how circadian rhythms interact with the organisms' ability to acquire and retain information about their environment. These experiments tested whether rats trained outside their endogenous active period demonstrate the same rate of acquisition, daily performance, and remote memory ability as their nocturnally trained counterparts in tasks of sustained attention and spatial memory. Furthermore, we explored how daily task training influenced circadian patterns of activity. We found that rats demonstrate better acquisition and performance on an operant task requiring attentional effort when trained during the dark-phase. Time of day did not affect acquisition or performance on the Morris water maze; however, when animals were retested 2 wk after their last day of training, they showed better remote memory if training originally occurred during the dark-phase. Finally, attentional, but not spatial, task performance during the light-phase promotes a shift toward diurnality and the synchronization of activity to the time of daily training; this shift was most robust when the demands on the cognitive control of attention were highest. Our findings support a theory of bidirectional interactions between cognitive performance and circadian processes and are consistent with the view that the circadian abnormalities associated with shift-work, aging, and neuropsychiatric illnesses may contribute to the deleterious effects on cognition often present in these populations. Furthermore, these findings suggest that time of day should be an important consideration for a variety of cognitive tasks principally used in psychological and neuroscience research.  相似文献   

2.
The impact of an acute circadian disruption on learning and memory in male and female rats was examined. Circadian disruption was elicited using a brief series of photoperiod shifts. Previous research using male rats showed that acute circadian disruption during acquisition of a spatial navigation task impaired long-term retention and that chronic circadian disruption impaired acquisition of the same task. However, the long-term effects of acute circadian disruption following circadian re-entrainment and whether sex differences in response to circadian disruption exist are still unknown. For the present study, rats were trained on the standard, spatial version of the Morris water task (MWT) and a visual discrimination task developed for the eight-arm radial maze. After reaching asymptotic performance, behavioural training was terminated and the experimental group experienced a series of photoperiod shifts followed by circadian re-entrainment. Following circadian re-entrainment, the subjects were given retention tests on the MWT and visual discrimination task. Following retention testing, an extra-dimensional shift using the eight-arm radial maze was also performed. An acute episode of circadian disruption elicited via photoperiod shifts negatively impacted retention of spatial memory in male and female rats. Retention of the visual discrimination task and the ability to detect extra-dimensional shifts were not impaired. The observed impairments on the MWT indicate that hippocampal representations are susceptible to a small number of photoperiod shifts even if the association is acquired prior to rhythm manipulation and retention is assessed following rhythm stabilization. Effects were limited to a hippocampus-dependent task, indicating that impairments are specific, not global.  相似文献   

3.
A common conceptualization of the organization of memory systems in brain is that different types of memory are mediated by distinct neural systems. Strong support for this view comes from studies that show double (or triple) dissociations between spatial, response, and emotional memories following selective lesions of hippocampus, striatum, and the amygdala. Here, we examine the extent to which hippocampal and striatal neural activity patterns support the multiple memory systems view. A comparison is made between hippocampal and striatal neural correlates with behavior during asymptotic performance of spatial and response maze tasks. Location- (or place), movement, and reward-specific firing patterns were found in both structures regardless of the task demands. Many, but not all, place fields of hippocampal and striatal neurons were similarly affected by changes in the visual and reward context regardless of the cognitive demands. Also, many, but not all, hippocampal and striatal movement-sensitive neurons showed significant changes in their behavioral correlates after a change in visual context, irrespective of cognitive strategy. Similar partial reorganization was observed following manipulations of the reward condition for cells recorded from both structures, again regardless of task. Assuming that representations that persist across context changes reflect learned information, we make the following conclusions. First, the consistent pattern of partial reorganization supports a view that the analysis of spatial, response, and reinforcement information is accomplished via an error-driven, or match-mismatch, algorithm across neural systems. Second, task-relevant processing occurs continuously within hippocampus and striatum regardless of the cognitive demands of the task. Third, given the high degree of parallel processing across allegedly different memory systems, we propose that different neural systems may effectively compete for control of a behavioral expression system. The strength of the influence of any one neural system on behavioral output is likely modulated by factors such as motivation, experience, or hormone status.  相似文献   

4.
Acute ethanol administration produces learning and memory impairments similar to those found following lesions to the hippocampal system in rats. For example, both ethanol and hippocampal lesions impair performance on spatial learning and memory tasks while sparing performance on many nonspatial learning and memory tasks. Lesions to the hippocampal system can also alter the nature of the information that the animal uses to guide its behavior, from using spatial information to using individual cues. In the present experiment, rats were trained, while sober, to navigate on an eight-arm radial arm maze to a specific arm for food reward. During training, the rewarded arm was always in the same specific location and contained well-defined cues. After the rat learned the task, a memory test was conducted under different doses of ethanol (0.0 g/kg [saline control], 1.0, 1.5, or 2.0 g/kg, intraperitoneal). On the test day the maze was rotated so that the cued arm was 90 degrees to the right of its original position. During testing, intact rats showed a significant bias to approach the place where they had been previously rewarded, even though the cue was no longer located there. Acute ethanol administration dose dependently reduced approaches to the rewarded place. However, ethanol administration did not result in increases in random choices; rather, it resulted in a dose-dependent increase in approaches to the cued arm, now in a new location. These results extend previous research showing that acute ethanol administration and lesions to the hippocampal system produce similar effects on learning and memory in rats.  相似文献   

5.
Three experiments investigated the role of the pigeon hippocampal formation (the hippocampus and area-parahippocampalis) in short-term memory for non-spatial and spatial information. The acquisition of delayed matching-to-sample and the short-term retention of non-spatial visual information, using a small set of sample stimuli, were unaffected by aspiration lesions of the hippocampus or the neostriatum (Experiment 1). Similarly, acquisition and short-term retention of non-spatial information using a successive, trial-unique, delayed non-matching-to-sample procedure were unaffected by hippocampal damage; the same birds had, however, displayed a profound autoshaping impairment (Experiment 2). Acquisition of a spatial delayed matching-to-sample task was unimpaired by hippocampal damage. However, lesioned animals were impaired following the introduction of retention intervals on this procedure (Experiment 3). The correspondence between the behavioural effects of hippocampal lesions in birds and mammals on short-term memory is discussed, and the implications of these results for avian hippocampal function are considered.  相似文献   

6.
Most biological functions display a 24 h rhythm that, in mammals, is under the control of an endogenous circadian oscillator located in the suprachiasmatic nuclei (SCN) of the hypothalamus. The circadian system provides an optimal temporal organization for physiological processes and behavior in relation to a cyclic environment imposed upon organisms by the regular alternation of day and night. In line with its function as a clock that serves to maintain a stable phase-relationship between endogenous rhythms and the light-dark cycle, the circadian oscillator appears to be well protected against unpredictable stressful stimuli. Available data do not provide convincing evidence that stress is capable of perturbing the central circadian oscillator in the SCN. However, the shape and amplitude of a rhythm is not determined exclusively by the SCN and certain stressors can strongly affect the output of the clock and the expression of the rhythms. In particular, social stress in rodents has been found to cause severe disruptions of the body temperature, heart rate and locomotor activity rhythms, especially in animals that are subject to uncontrollable stress associated with defeat and subordination. Such rhythm disturbances may be due to effects of stress on sub-oscillators that are known to exist in many tissues, which are normally under the control of the SCN, or due to other effects of stress that mask the output of the circadian system. These disturbances of peripheral rhythms represent an imbalance between normally precisely orchestrated physiological and behavioral processes that may have severe consequence for the health and well being of the organism.  相似文献   

7.
The rodent hippocampal system is known to play an important role in memory. Evidence that this role is not limited to spatial memory has come from studies using a variety of non-spatial memory tasks. One example is the social transmission of food preference paradigm, a task in which rats learn an odor-odor association with no explicit spatial memory component. However, because training and testing in this task typically take place in the same environment, it is possible that memory for the spatial context in which odors are experienced during training is critical to subsequent retention performance. If this is the case, it might be expected that lesions of the hippocampal system would impair memory performance by disrupting the establishment of a representation of the training environment. We addressed this issue by training rats in one spatial context and then testing them either in the same or a different spatial context. Normal control rats performed equally well when tested in an environment that was the same or different from that used during training, and the retention impairment exhibited by rats with hippocampus plus subiculum lesions was equivalent in the two test environments. These results support the view that the hippocampal system is necessary for the flexible expression of nonspatial memories even when the spatial context in which the memory is acquired is not critical to retrieval.  相似文献   

8.
The effect of hippocampal denervation on olfactory memory in rats was tested after interrupting the lateral olfactory tract projections at the level of the entorhinal cortex. When lesioned animals were trained to learn new odors, they showed no evidence of retention 3 h after acquisition. These results confirm earlier data on rapid forgetting in rats after hippocampal deafferentation and are in parallel to the anterograde amnesia typically found in humans with hippocampal damage. On the other hand, preoperatively learned information was minimally impaired after hippocampal deafferentation even if it was acquired within less than 1 h before the lesion. This finding differs from reports on humans as well as monkeys with hippocampal damage where memories formed during a critical time span of months or even years before the lesion are found to be impaired. This may suggest that the consolidation process in humans and rodents has different time scales or that the roles of the human and the rat hippocampal structure in memory formation are somewhat different.  相似文献   

9.
Several studies have shown that slight modifications in the standard reference spatial memory procedure normally used for allocentric learning in the Morris water maze and the radial maze, can overcome the classic deficit in allocentric navigation typically observed in rats with hippocampal damage. In these special paradigms, however, there is only intramaze manipulation of a salient stimulus. The present study was designed to investigate whether extramaze manipulations produce a similar outcome. With this aim a four-arm plus-shaped maze and a reference spatial memory paradigm were used, in which the goal arm was marked in two ways: by a prominent extramaze cue (intermittent light), which maintained a constant relation with the goal, and by the extramaze constellation of stimuli around the maze. Experiment 1 showed that, unlike the standard version of the task, using this special training procedure hippocampally-damaged rats could learn a place response as quickly as control animals; importantly, one day after reaching criterion, lesioned and control subjects performed the task perfectly during a transfer test in which the salient extramaze stimulus used during the acquisition was removed. However, although acquisition deficit was overcomed in these lesioned animals, a profound deficit in retention was detected 15 days later. Experiment 2 suggests that although under our special paradigm hippocampal rats can learn a place response, spatial memory only can be expressed when the requisites of behavioral flexibility are minimal. These findings suggest that, under certain circumstances, extrahippocampal structures are sufficient for building a coherent allocentric representation of space; however, flexible memory expression is dependent, fundamentally, on hippocampal functioning.  相似文献   

10.
The hippocampal CA3 subregion is critical for rapidly encoding new memories, which suggests that neuronal computations are implemented in its circuitry that cannot be performed elsewhere in the hippocampus or in the neocortex. Recording studies show that CA3 cells are bound to a large degree to a spatial coordinate system, while CA1 cells can become more independent of a map-based mechanism and allow for a larger degree of arbitrary associations, also in the temporal domain. The mapping of CA3 onto a spatial coordinate system intuitively points to its role in spatial navigation but does not directly suggest how such a mechanism may support memory processing. Although bound to spatial coordinates, the CA3 network can rapidly alter its firing rate in response to novel sensory inputs and is thus not as strictly tied to spatial mapping as grid cells in the medial entorhinal cortex. Such rate coding within an otherwise stable spatial map can immediately incorporate new sensory inputs into the two-dimensional matrix of CA3, where they can be integrated with already stored information about each place. CA3 cell ensembles may thus support the fast acquisition of detailed memories by providing a locally continuous, but globally orthogonal representation, which can rapidly provide a new neuronal index when information is encountered for the first time. This information can be interpreted in CA1 and other downstream cortical areas in the context of less spatially restricted information.  相似文献   

11.
12.
Despite the fact that TRPV1 receptors are widely expressed in brain structures such as the hippocampus, its functions remain largely unknown. In the present study, we have investigated the possible modulatory role of the hippocampal endovanilloid system upon memory consolidation of two different behavioral tasks in rats. Post-training infusion of the TRPV1 antagonist capsazepine disrupted memory consolidation with a strong training protocol, but not with a weak one in the contextual fear conditioning or in the step-down inhibitory avoidance task. These results provide evidence that the modulation of the hippocampal memory consolidation through TRPV1 receptors takes place only in presence of a strong emotional experience, suggesting that a certain aversiveness level is required in order to recruit endovanilloids to exert this function. A possible synergic role of hippocampal endovanilloid and endocannabinoid system on memory consolidation is discussed.  相似文献   

13.
Various demonstrations of “time stamp” effects in the animal learning literature have reinforced the idea that circadian information is encoded as part of a combined internal/external representation of context and that this contextual information is utilized for complex retrieval processes supporting memory. The goal of the present series of experiments is to assess this idea by manipulating training/testing circadian times on a battery of learning and memory tasks commonly used in the rodent. The data obtained from five experiments using four different learning and memory paradigms provide no evidence for “time stamp” effects on place memory, context memory (aversive or appetitive), or S-R habit learning.  相似文献   

14.
Interactions with neocortical memory systems may facilitate flexible information processing by hippocampus. We sought direct evidence for such memory influences by recording hippocampal neural responses to a change in cognitive strategy. Well-trained rats switched (within a single recording session) between the use of place and response strategies to solve a plus maze task. Maze and extramaze environments were constant throughout testing. Place fields demonstrated (in-field) firing rate and location-based reorganization [Leutgeb, S., Leutgeb, J. K., Barnes, C. A., Moser, E. I., McNaughton, B. L., & Moser, M. B. (2005). Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science, 309, 619-623] after a task switch, suggesting that hippocampus encoded each phase of testing as a different context, or episode. The task switch also resulted in qualitative and quantitative changes to discharge that were correlated with an animal's velocity or acceleration of movement. Thus, the effects of a strategy switch extended beyond the spatial domain, and the movement correlates were not passive reflections of the current behavioral state. To determine whether hippocampal neural responses were unique, striatal place and movement-correlated neurons were simultaneously recorded with hippocampal neurons. Striatal place and movement cells exhibited a response profile that was similar, but not identical, to that observed for hippocampus after a strategy switch. Thus, retrieval of a different memory led both neural systems to represent a different context. However, hippocampus may play a special (though not exclusive) role in flexible spatial processing since correlated firing amongst cell pairs was highest when rats successfully switched between two spatial tasks. Correlated firing by striatal cell pairs increased following any strategy switch, supporting the view that striatum codes change in reinforcement contingencies.  相似文献   

15.
The present experiment used hippocampal stimulation to determine the temporal gradient of consolidation of spatial working memory. Rats were trained to perform a spatial working memory task on a radial maze with 12 arms. Each rat went to the ends of 6 arms to obtain a food reward. After 8 h, the rat chose among all the arms to find the ones not previously chosen (and consequently still having food). During some test sessions, the hippocampus was stimulated electrically either at a current level just high enough to produce an electrophysiological seizure, or at a current level below this seizure threshold. Stimulation occurred at one of five intervals (0 to 8 h) following the completion of the first six choices. During other test sessions, the hippocampus was not stimulated. After seizure stimulation, the number of retroactive errors (returning to arms chosen prior to stimulation) increased at all delay intervals; the number of proactive errors (returning to arms chosen after stimulation) increased only with the delay of 8 h. Subthreshold stimulation had no influence on either type of error. These results indicate that normal hippocampal function is required for the maintenance of spatial information in working memory, and that the time course of consolidation of this information is significantly greater than that seen in other types of memory, or consolidation may not take place at all.  相似文献   

16.
Animals possess the ability to remember both the time of day as well as the location that noxious and potentially dangerous conditions occur. A behavioral expression of this learning is demonstrated in conditioned place avoidance (CPA). CPA is strongest when the time of testing matches the time of day that the prior training had occurred, suggesting the involvement of a circadian oscillator that modulates either memory retrieval or reactivity to the conditioned environment. In these experiments we show that time of day learning persists in the absence of the central circadian clock in the suprachiasmatic nucleus (SCN), demonstrating that memory for time of day is implicit in context conditioning and may involve a circadian oscillator that is distinct from the SCN.  相似文献   

17.
This study investigates the implication of the hippocampal CA3-region in the different phases of learning and memory in spatial and non-spatial tasks. For that purpose, we performed focal injections of diethyldithiocarbamate (DDC) into the CA3-region of the dorsal hippocampus. The DDC chelates most of the heavy metals in the brain which blocks selectively and reversibly the synapses containing heavy metals, i.e., the mossy fibres synaptic buttons and synapses of the dendrites of pyramidal cells. The effects of temporal inactivation of the CA3-region was examined in a non-associative task, the spatial open-field, designed to estimate the ability of mice to react to spatial changes, and in the object recognition task, designed to estimate the ability of mice to identify a familiar object. The results show that DDC induced a specific impairment on learning and memory consolidation in the spatial open-field but had no effect on recall in this task. In the object recognition task, DDC did not induce any impairment in the different phases of learning and memory. These data demonstrate that the hippocampal CA3-region is specifically implicated in spatial information processing and seems to be involved not only in acquisition but also in consolidation of spatial information.  相似文献   

18.
19.
Cornell University Medical College, Westchester Division, The New York Hospital, White Plains, New York It is well established that there is a complex timekeeping mechanism in the human brain. This mechanism is associated with a variety of physiological and psychological rhythms having a period of about a day, and thus referred to as circadian rhythms. The circadian system has recently been modeled in terms of two underlying oscillators, one much more resistant to changes in routine than the other. These oscillators are considered to be endogenous, that is, internal to the organism, and not reliant for their existence upon changes in the person’s environment or general behavior. They thus continue to run even when the sleep/wake cycle is suspended, as in sustained operations. Thus, by their very nature, sustained operations require the individual to override the inputs that are coming from his or her circadian system (especially the indication that sleep is required). The aim of this paper is to provide a background to the area of circadian rhythms research, including a section on the methodology, so that the impact of the circadian system on sustained operations can be better understood.  相似文献   

20.
Several lines of evidence indicate that Ca2+/calmodulin-stimulated isoforms of adenylyl cyclase (AC) are involved in long-term potentiation and in certain forms of learning. Recently, we found that training in different types of learning task differentially activates Ca2+-sensitive versus Ca2+-insensitive AC activities in certain brain regions, indicating that AC species other than those stimulated by Ca2+/calmodulin may play an important role in learning processes (Guillou, Rose, & Cooper, 1999). Here, we report the effects of spatial reference memory training in a radial arm maze on the levels of AC1 and AC2 mRNA in the dorsal hippocampus of C57BL/6 mice. Acquisition of the task was associated with a learning-specific and time-dependent increase of AC1 mRNA expression selectively in subfields CA1-CA2. In contrast, AC2 mRNA levels were either reduced or not reliably affected depending on the stage of acquisition. Moreover, no significant changes in AC expression were observed either in the dorsal hippocampus of mice trained in a non-spatial (procedural) version of the task or in cortical regions of mice learning the spatial or procedural task. The regional specificity of these effects indicates that the formation of spatial and non-spatial memory requires distinct contributions from Ca2+-sensitive and Ca2+-insensitive AC in the hippocampus. It is suggested that downregulation of AC2 throughout all hippocampal subfields may play a permissive role during the acquisition of spatial learning whereas an upregulation of AC1 specifically in subfield CA1, may be critical to accurately encode, store or use spatial information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号