首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The question addressed in the present experiment was whether an individual who practices a task under different conditions of afferent information develops different movement representations, each of which is based on the most accurate source of afferent information for movement control. In Experiment 1, participants (N = 23) performed a manual aiming movement in a target-only condition for 520 trials before performing in a normal vision condition for an equivalent amount of practice. Control groups performed all practice trials in either a normal vision or a target-only condition. The results revealed that the movement representation developed in the initial (target-only) practice phase remained accessible for movement planning and control. The results of Experiment 2 indicated, however, that participants did not maintain such a representation when their initial practice in the target-only condition was reduced (40 or 160 trials) before they had extensive practice in normal vision. Those results indicate that extensive practice in a target-only and then in a normal vision condition enables an individual to plan and control his or her movement on the basis of the most efficient source of available afferent information. Because visual afferent information provides optimal information for ensuring movement accuracy, however, if initial practice in the target-only condition is only modest or moderate it is likely that that information source will progressively dominate all other sources of afferent information for movement planning and control.  相似文献   

2.
Temporal and spatial coupling of point of gaze (PG) and movements of the finger, elbow, and shoulder during a speeded aiming task were examined. Ten participants completed 40-cm aiming movements with the right arm, in a situation that allowed free movement of the eyes, head, arm, and trunk. On the majority of trials, a large initial saccade undershot the target slightly, and 1 or more smaller corrective saccades brought the eyes to the target position. The finger, elbow, and shoulder exhibited a similar pattern of undershooting their final positions, followed by small corrective movements. Eye movements usually preceded limb movements, and the eyes always arrived at the target well in advance of the finger. There was a clear temporal coupling between primary saccade completion and peak acceleration of the finger, elbow, and shoulder. The initiation of limb-segment movement usually occurred in a proximal-to-distal pattern. Increased variability in elbow and shoulder position as the movement progressed may have served to reduce variability in finger position. The spatial-temporal coupling of PG with the 3 limb segments was optimal for the pick up of visual information about the position of the finger and the target late in the movement.  相似文献   

3.
An experiment was conducted to examine the contribution of sensory information to asymmetries in manual aiming. Movements were performed in four vision conditions. In the full-vision condition (FV), subjects were afforded vision of both the hand and the target throughout the course of the movement. In the ambient-illumination-off condition (AO), the room lights were extinguished at movement initiation, preventing vision of the moving limb. In the target-off (TO) condition, the target was extinguished upon initiation of the movement. In a no-vision (NV) condition, ambient illumination was removed and the target was extinguished upon initiation of the response movement. Results indicated that accuracy was superior in the full-vision and target-off conditions and when movements were made by the right hand. Movements made by the right hand were also of shorter mean duration. The magnitudes of performance asymmetries were uninfluenced by vision condition. Analyses of movement kinematics revealed that movements made in conditions in which there was vision of the limb exhibited a greater number of discrete modifications of the movement trajectory. On an individual-trial basis, no relationship existed between accuracy and the occurrence of discrete modifications. These data suggest that although vision greatly enhances accuracy, discrete modifications subserved by vision reflect the imposition of nonfunctional zero-order control processes upon continuous higher-order control regimes.  相似文献   

4.
With their eyes initially on either the home, midline, or final end position, 30 participants practiced a 2-target aiming movement. After 120 acquisition trials, participants performed a retention test and were then transferred to each of the other 2 eye conditions. During acquisition, all groups improved over practice, but the home group showed the greatest improvement. The temporal improvement was most pronounced in the times spent after peak velocity. Retention and transfer tests indicated that participants performed best under eye-movement conditions that were the same as the 1 they had practiced in. There was also positive transfer of training between conditions in which the oculomotor information was similar. Thus, to optimize learning, one should practice under the same afferent and oculomotor conditions that will be required for the final performance.  相似文献   

5.
Over the last century, investigators have developed a number of models to explain the relation between speed and accuracy in target-directed manual aiming. The models vary in the extent to which they stress the importance of feedforward processes and the online use of sensory information (see D. Elliott, W. F. Helsen, & R. Chua, 2001, for a recent review). A common feature of those models is that the role of practice in optimizing speed, accuracy, and energy expenditure in goal-directed aiming is either ignored or minimized. The authors present a theoretical framework for understanding speed-accuracy tradeoffs that takes into account the strategic, trial-to-trial behavior of the performer. The strategic behavior enables individuals to maximize movement speed while minimizing error and energy expenditure.  相似文献   

6.
The author examined the minimum amount of time needed for vision to increase aiming accuracy and decrease movement duration. Participants selected when they would receive a visual sample during aiming movements by pressing a switch held with the left hand. The sample was one of the following durations: 40 ms, 30 ms, 20 ms, 10 ms, or 0 ms (no vision). Decreased accuracy in the no-vision condition compared to the vision conditions was observed when the duration of the impending sample was unknown (Experiment 1). Samples 40 ms in duration were sufficient to decrease endpoint variability when the duration of the sample was known before the movement (Experiment 2). These results indicate that short visual samples can be used to decrease movement time and increase accuracy and that knowledge of the impending visual context can impact the individual's subsequent behavior.  相似文献   

7.
The withdrawal of vision of the arm during a manual aiming task has been found to result in a large increase in aiming error, regardless of the amount of practice in normal vision before its withdrawal. In the present study, the authors investigated whether the increase in error reflects the domination of visual afferent information over the movement representation developed during practice to the detriment of other sources of afferent information or whether it reflects only transformation errors of the location of the target from an allocentric to an egocentric frame of reference. Participants (N = 40) performed aiming movements with their dominant or nondominant arm in a full-vision or target-only condition. The results of the present experiment supported both of those hypotheses. The data indicated that practice does not eliminate the need for visual information for optimizing movement accuracy and that learning is specific to the source or sources of afferent information more likely to ensure optimal accuracy during practice. In addition, the results indicated that movement planning in an allocentric frame of reference might require simultaneous vision of the arm and the target. Finally, practice in a target-only condition, with knowledge of results, was found to improve recoding of the target in an egocentric frame of reference.  相似文献   

8.
The aim of the study was to analyse lateralized preferences during reaching and grasping in infants relative to changes in manual actions from 4 to 7 months of age. Reaching and grasping movements with visual fixation were studied with objects placed in one of three places on a table: to the left, to the right and in the midline of the infant. Although the two lateralized objects were approached and grasped with ipsilateral hand, movements towards the object in the midline were most often performed with a preferential hand. There was preferential use of the left hand for reaching around the fourth month, then a preferential use of the right hand for grasping from the sixth month. The shape of the left hand during reaching movements terminated in the vicinity of the object. The slower the speed, the closer the hand came to the object. The onset of the prehension was associated with a preferential use of the right hand, which performed grasping, more finely than the left hand. Thus, manual specialization is already present in early infancy: the left hand appears to be dedicated to spatial calibration and the right hand to the task of prehension.  相似文献   

9.
Two experiments examined on-line processing during the execution of reciprocal aiming movements. In Experiment 1, participants used a stylus to make movements between two targets of equal size. Three vision conditions were used: full vision, vision during flight and vision only on contact with the target. Participants had significantly longer movement times and spent more time in contact with the targets when vision was available only on contact with the target. Additionally, the proportion of time to peak velocity revealed that movement trajectories became more symmetric when vision was not available during flight. The data indicate that participants used vision not only to 'home-in' on the current target, but also to prepare subsequent movements. In Experiment 2, liquid crystal goggles provided a single visual sample every 40 ms of a 500 ms duty cycle. Of interest was how participants timed their reciprocal aiming to take advantage of these brief visual samples. Although across participants no particular portion of the movement trajectory was favored, individual performers did time their movements consistently with the onset and offset of vision. Once again, performance and kinematic data indicated that movement segments were not independent of each other.  相似文献   

10.
Recent investigations of timing in motor control have been interpreted as support for the concept of brain modularity. According to this concept, the brain is organized into functional modules that contain mechanisms responsible for general processes. Keele and colleagues (Keele & Hawkins, 1982; Keele & Ivry, 1987; Keele, Ivry, & Pokorny, 1987; Keele, Pokorny, Corcos, & Ivry, 1985) demonstrated that the within-subject variability in cycle duration of repetitive movements is correlated across finger, forearm, and foot movements, providing evidence in support of a general timing module. The present study examines the notion of timing modularity of speech and nonspeech movements of the oral motor system as well as the manual motor system. Subjects produced repetitive movements with the finger, forearm, and jaw. In addition, a fourth task involved the repetition of a syllable. All tasks were to be produced with a 400-ms cycle duration; target duration was established with a pacing tone, which then was removed. For each task, the within-subject variability of the cycle duration was computed for the unpaced movements over 20 trials. Significant correlations were found between each pair of effectors and tasks. The present results provide evidence that common timing processes are involved not only in movements of the limbs, but also in speech and nonspeech movements of oral structures.  相似文献   

11.
In 2 prism adaptation experiments, the authors investigated the effects of limb starting position visibility (visible or not visible) and visual feedback availability (early or late in target pointing movements). Thirty-two students participated in Experiment 1 and 24 students participated in Experiment 2. Independent of visual feedback availability, constant error was larger and variable error was smaller for target pointing when limb starting position was visible during prism exposure. Independent of limb starting position visibility, aftereffects of prism exposure were determined by visual feedback availability. Those results support the hypothesis that calibration is determined by limb starting position visibility, whereas alignment is determined separately by visual feedback availability.  相似文献   

12.
Two types of adaptive processes involved in prism adaptation have been identified: slower spatial realignment among the several unique sensorimotor coordinate systems (spatial maps) and faster strategic motor control responses (including skill learning and calibration) to spatial misalignment. One measures the 1st process by assessing the aftereffects of prism exposure, whereas direct effects of the prism during exposure are a measure of the 2nd process. A model is described that relates those adaptive processes and distinguishes between extraordinary alignment and ordinary calibration. A conformal translation algorithm that operates on the hypothesized circuitry is proposed. The authors apply the model to explain the advantage of visual calibration when the limb is seen in the starting position prior to movement initiation. Implications of the model for the use of prism adaptation as a tool for investigation of motor control and learning are discussed.  相似文献   

13.
简要介绍阅读中眼动控制的研究进展,具体探讨了阅读过程中关于注视点停留位置、跳读、回视和注视时间等方面的研究,并对Morrison的眼动理论模型、O'Regan的战略战术模型和Reichle最新提出的E—Z读者模型进行了评述。最后,提出在吸收国外的这些研究成果的同时,要注意考虑中文与西文阅读的差异性。  相似文献   

14.
The authors examined the effects of the degree of impairment of the contralesional upper limb and the side of the hemispheric damage on ipsilesional upper limb performance in chronic stroke individuals. Right- and left-side stroke resulting in mild-to-severe impairment and healthy participants took part in simple and choice reaction time tasks involving aiming movements. The stroke individuals performed the aiming movements with the ipsilesional upper limb using a digitizing tablet to ipsi- or contralateral targets presented in a monitor. The global performance of the group with severe right hemispheric damage was worse than that of the other groups, indicating that the side of hemispheric damage and degree of motor impairment can adversely affect aiming movement performance.  相似文献   

15.
In investigating Eysenck’s (1965) suggestion of the specificity of reminiscence, 50 high school boys were tested on 2 gross motorcoordination tasks—one involving tracking and the other balance. In the practice schedule, which was identical for both tasks, all Ss were given 20 50-sec. trials with a 10-sec. intertrial rest. A 5-min. interpolated rest was given after every fourth trial. The reliability of individual differences in reminiscence for both tasks was found to be extremely low. While Eysenck’s hypothesis was not necessarily weakened, doubt was cast upon the specificity of reminiscence in the usual context of the word.  相似文献   

16.
The purpose of this study was to examine the effects of a 12 month exercise program on lower limb movement variability in patients with peripheral arterial disease (PAD). Participants (n = 21) with an appropriate history of PAD and intermittent claudication (IC) volunteered for this study and were randomly allocated to either a control group (CPAD–IC) (n = 11), which received normal medical therapy and a treatment group (TPAD–IC) (n = 10), which received normal medical therapy treatment and a 12 month supervised exercise program. All participants underwent 2D joint angular kinematic analysis during normal walking to assess lower limb movement variability and walking speed. Between-group differences were analyzed via mixed measures ANOVA. The 12 month supervised exercise program made no significant impact on the lower limb movement variability or walking speed of the TPAD–IC group as determined by either intralimb joint coordination or single joint analysis techniques. Long term supervised exercise programs do not appear to influence the lower limb movement variability of PAD–IC patients.  相似文献   

17.
A sample of 96 children from kindergarten, 2nd, 4th, and 6th grades judged the truthfulness of peers who varied in gaze and limb movement while providing verbal communications. Results indicated that children attributed greater lying to the peers who displayed indirect rather than direct gaze and active rather than nonactive limb movement. The use of these cues was more evident in 4th- and 6th-grade children than it was in kindergarten and 2nd-grade children. Pilot studies indicated that adults and children as young as 5-6 years of age associated indirect gaze and active limb movement with anxiety. The findings are discussed with respect to children's theory of mind, concepts of lying, understanding of display rules, and learning of physiological cues associated with deception.  相似文献   

18.
Examinations of goal-directed movements reveal a process of control that operates to make adjustments on the basis of the expected visual afference associated with the limb's movement. This experiment examined the impact of perturbations to the perceived and actual velocity of aiming movements when each was presented alone or in tandem with the other. Perturbations to perceived velocity were achieved by translating the background over which aiming movements were performed. An aiming stylus that discharged air either in the direction of the movement or in the direction opposite the movement generated the actual velocity perturbations. Kinematic analyses of the aiming movements revealed that only the actual perturbation influenced the control of early movement trajectories. The results are discussed with respect to the influence that visual information has on the control exerted against physical perturbations. Speculations are raised regarding how potential for perturbations influences the strategies adopted for minimizing their impact.  相似文献   

19.
The authors examined the movement patterns of 5 left-handed handball players (ranging from beginner to national level) who threw a handball to different sections of a goal as if a goalkeeper were present. The authors used time-continuous, 3-dimensional kinematic data to assess interindividual movement patterns and considered participants' intraindividual differences relative to different targets. Cluster analysis yielded the highest assignment rates for level of expertise; a mean of 92% of trials was correctly assessed. The authors observed an interaction with expertise for the intraindividual movement patterns. Variability in the novice throwers was increased, whereas (a) advanced throwers experienced a period of stability, and (b) the expert thrower's variability was increased. The results indicate that random variability characterizes novice motor performance, whereas active functional variability may exemplify expert motor performance.  相似文献   

20.
The authors investigated the impact of emotion on the performance of a square-tracing task after participants (N = 40) were exposed to pleasant (P), unpleasant (U), and neutral (N) pictures. Physiological and self-report measures indexed affective valence and arousal. In Experiment 1, greater error followed exposure to 4 consecutive U images than exposure to 4 consecutive P images. Speed of performance did not vary as a function of valence. In Experiment 2, participants viewed 1 slide per trial within a modified exposure protocol. Speed of performance varied as a function of valence; faster performance followed U relative to P stimuli. Accuracy of performance did not vary between conditions. Corresponding self-report and physiological measures generally corroborated previous evidence. Findings collectively indicated that the length of exposure to affective stimuli mediates speed and accuracy of motor performance; compared with P stimuli, U stimuli led to either increased error (short exposure) or increased speed (multiple exposures). The authors conclude that brief and extended exposures to affective pictures have direct behavioral consequences, and they discuss the implications of that finding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号