首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
Two experiments are reported in which the effects of different levels of spatial variability of the initial phase of aiming movements were explored. It was found that longer, faster, and more spatially variable initial sub movements were associated with an almost proportional increase in the distance between the average location at which the first submovement ended and the target. The first experiment involved a multisegmental arm motion that required a direction reversal, in which spatial variability could be estimated in all three dimensions. The second was a unidirectional, one-degree-of-freedom wrist supination task. The variability-amplitude relationship for the initial submovement was present in both. It is argued that the variability, or unpredictability, of the initial submovement is a determinant of its average amplitude, such that initial submovements approach the target as closely as is permitted by the level of variability. Such a mechanism allows task constraints such as accuracy requirements and allowable error rates to be met most efficiently, in a manner similar to the recently described optimization of submovement durations. If this mechanism is a general, ubiquitous phenomenon in rapid aiming, certain features of its internal kinematic structure are predictable. A set of five such predictions is outlined.  相似文献   

2.
Three experiments are reported in which subjects practiced rapid aimed limb movements (arm pointing and wrist rotation) toward a visible target region. Subjects were required to minimize their movement durations while still landing in the target. The movement trajectories were examined to assess the effects of practice on separate component submovements of the limb movements. The results revealed that practice improved primarily temporal, not spatial, aspects of performance. Practice reduced the overall movement durations, but had different effects on the individual submovements. Practice allowed subjects to reduce the amount of time spent performing final corrective submovements, but actually increased slightly the time needed to produce the initial ballistic submovement. The results suggest that practice in the present task primarily enhanced the ability to use feedback information, but there was also some evidence of changes in the ballistic, preprogrammed portion of the movements. The results demonstrate that analysis of submovements can reveal important details of the underlying motor control processes.  相似文献   

3.
An experiment is reported in which subjects (N = 30) practiced rapid aimed limb movements (wrist rotations), with either full visual feedback, no visual feedback, or delayed visual feedback. Previous research has indicated that, with practice, subjects increase the distance and duration of ballistic primary submovements and decrease the distance and duration of corrective secondary submovements. The design of the present experiment permitted the determination of whether these practice-related changes are results of improved programming of the primary submovement or of more efficient processing involved in the production of secondary submovements. The results suggest that improved programming occurs with practice. Furthermore, it appears that visual feedback is not solely responsible for the production of secondary submovements.  相似文献   

4.
Three experiments are reported in which subjects practiced rapid aimed limb movements (arm pointing and wrist rotation) toward a visible target region. Subjects were required to minimize their movement durations while still landing in the target. The movement trajectories were examined to assess the effects of practice on separate component submovements of the limb movements. The results revealed that practice improved primarily temporal, not spatial, aspects of performance. Practice reduced the overall movement durations, but had different effects on the individual submovements: Practice allowed subjects to reduce the amount of time spent performing final corrective submovements, but actually increased slightly the time needed to produce the initial ballistic submovement. The results suggest that practice in the present task primarily enhanced the ability to use feedback information, but there was also some evidence of changes in the ballistic, preprogrammed portion of the movements. The results demonstrate that analysis of submovements can reveal important details of the underlying motor control processes.  相似文献   

5.
Discrete aimed hand movements, made by subjects given temporal-accuracy and time-minimization task instructions, were compared. Movements in the temporal-accuracy task were made to a point target with a goal movement time of 400 ms. A circular target then was manufactured that incorporated the measured spatial errors from the temporal-accuracy task, and subjects attempted to contact the target with a minimum movement time and without missing the circular target (time-minimization task instructions). This procedure resulted in equal movement amplitude and approximately equal spatial accuracy for the two task instructions. Movements under the time-minimization instructions were completed rapidly (M = 307 ms) without target misses, and tended to be made up of two submovements. In contrast, movements under temporal-accuracy instructions were made more slowly (M = 397 ms), matching the goal movement time, and were typically characterized by a single submovement. These data support the hypothesis that movement times, at a fixed movement amplitude versus target width ratio, decrease as the number of submovements increases, and that movements produced under temporal-accuracy and time-minimization have different control characteristics. These control differences are related to the linear and logarithmic speed-accuracy relations observed for temporal-accuracy and time-minimization tasks, respectively.  相似文献   

6.
Origins of submovements during pointing movements   总被引:1,自引:0,他引:1  
Submovements that are frequently observed in the final portion of pointing movements have traditionally been viewed as pointing accuracy adjustments. Here we re-examine this long-lasting interpretation by developing evidence that many of submovements may be non-corrective fluctuations arising from various sources of motor output variability. In particular, non-corrective submovements may emerge during motion termination and during motion of low speed. The contribution of these factors and the factor of accuracy regulation in submovement production is investigated here by manipulating movement mode (discrete, reciprocal, and passing) and target size (small and large). The three modes provided different temporal combinations of accuracy regulation and motion termination, thus allowing us to disentangle submovements associated with each factor. The target size manipulations further emphasized the role of accuracy regulation and provided variations in movement speed. Gross and fine submovements were distinguished based on the degree of perturbation of smooth motion. It was found that gross submovements were predominantly related to motion termination and not to pointing accuracy regulation. Although fine submovements were more frequent during movements to small than to large targets, other results show that they may also be not corrective submovements but rather motion fluctuations attributed to decreases in movement speed accompanying decreases in target size. Together, the findings challenge the traditional interpretation, suggesting that the majority of submovements are fluctuations emerging from mechanical and neural sources of motion variability. The implications of the findings for the mechanisms responsible for accurate target achievement are discussed.  相似文献   

7.
Most current movement control theories include the idea that movement toward a target can be broken into several submovements. The complexity of analyzing a movement into its constituent submovement structure and the additional complexity imposed by the problem of noise in the data and hand tremor seem to be daunting to researchers. This paper discusses a program that can ameliorate both of these problems and parse movements into their constituent submovements. It also contains a graphing feature that is useful as a visual tool for analyzing submovement structure. The programs are easily modifiable, so that researchers can specify their own parsing rules on the basis of different assumptions about movement control and use the parser for data from different experimental tasks.  相似文献   

8.
To investigate the role that postural stability plays in fine motor control, we assessed kinematics of the head, shoulder, elbow, and the pen during an accuracy drawing task in 24 children. Twelve children were classified into an accurate drawing (AD) group and 12 children into an inaccurate drawing (ID) group based on a manual dexterity task from the movement assessment battery for children [Henderson, S. E., & Sugden, D. A. (1992). Movement assessment battery for children. London: Psychological Corporation.]. Their parents completed a questionnaire to assess children's inattention, hyperactivity, and impulsivity. An electromagnetic tracking system was used to monitor 3-D kinematic data of the body parts, while 2-D kinematic data of pen movement was simultaneously collected from a computer digitizer tablet. If a sudden body motion (1cm/s) occurred within a time window from one second prior to the onset of the drawing error to the end of the error, we considered that the error coincided with the extraneous body movement. For each drawing trial, the coincidence rate was computed as (number of coincidences)/(number of errors). The ID group had a significantly higher coincidence rate of head and shoulder movements compared with elbow movements, whereas coincidence rates did not differ between the three body parts in the AD group. Parental ratings of children's behavioral ratings of inattention, hyperactivity, and impulsivity were not correlated with the coincidence rates. The results indicated that inaccurate drawing was a result of postural instability rather than fidgeting caused by inattention or hyperactivity/impulsivity.  相似文献   

9.
An experiment is reported in which participants at 6 (n = 20), 9 (n = 20), and 24 years (n = 20) of age either received or did not receive practice on a rapid aiming task using the arm and hand. The purpose of the experiment was to document the changes in movement substructures (in addition to movement time) as a function of practice. After receiving 10 baseline trials, subjects in the practice groups received 30 practice trials followed by 10 retention trials on each of 5 days, while subjects in the no-practice group had only baseline and retention trials. Retention-only trials were divided into primary (reflecting the ballistic controlled part of the movement) and secondary (reflecting corrective movement adjustments) submovements. In addition, jerk (the 3rd derivative of movement displacement) was calculated as an estimate of the smoothness of the movement. Participants increased the primary submovement as a function of practice; however, the increases were substantially larger in the children (25-30%) than in the adults (10%). Participants also decreased jerk as a function of practice and the decreases were greater in children than in adults. The results suggest that with practice the primary submovement is lengthened so that it ends nearer the target, especially in children. Associated with the primary submovement covering a larger percentage of the movement length and time, movements became smoother.  相似文献   

10.
11.
Theories of common-coding propose that feature codes of perceived and to-be-produced events are likely to interact with each other when they overlap. We investigated the impact of bottom-up and top-down processes on cross talk in a motor replication task. Participants moved a pen on a covered digitizer tablet while a gain varied the relation between hand and cursor amplitude. Then, participants replicated the hand amplitude (intra-modal) or the cursor amplitude (intermodal) without visual feedback. We replicated that, when the not-to-be-replicated amplitude was longer (shorter) than the to-be-replicated amplitude, replications significantly overshot (undershot) (= after-effects). Importantly, after-effects were remarkably smaller in the experimental groups which wore gloves (thin and thick rubber) or goggles (clear and tinted lenses) than in a control group. Our results provide evidence that top-down attention modulated perception–action interaction.  相似文献   

12.
In 3 experiments, the authors investigated and described how individuals control manual interceptive movements to slowly moving targets. Participants (N = 8 in each experiment) used a computer mouse and a graphics tablet assembly to manually intercept targets moving across a computer screen toward a marked target zone. They moved the cursor so that it would arrive in the target zone simultaneously with the target. In Experiment 1, there was a range of target velocities, including some very slow targets. In Experiment 2, there were 2 movement distance conditions. Participants moved the cursor either the same distance as the target or twice as far. For both experiments, hand speed was found to be related to target speed, even for the very slowly moving targets and when the target-to-cursor distance ratios were altered, suggesting that participants may have used a strategy similar to tracking. To test that notion, in Experiment 3, the authors added a tracking task in which the participants tracked the target cursor into the target zone. Longer time was spent planning the interception movements; however, there was a longer time in deceleration for the tracking movements, suggesting that more visually guided trajectory updates were made in that condition. Thus, although participants scaled their interception movements to the cursor speed, they were using a different strategy than they used in tracking. It is proposed that during target interception, anticipatory mechanisms are used rather than the visual feedback mechanism used when tracking and when pointing to stationary targets.  相似文献   

13.
In this study it was investigated how primary school children perform a graphomotor task which required them to simultaneously achieve multiple movement goals. Thirty-four 1st-grade primary school children were asked to produce with an electronic ink pen loop patterns varying in height (3, 6, 9 and 12 mm) on preprinted sheets of paper attached to a digitizer tablet. The task was paced by means of an acoustic signal of either 1, 2 or 3 Hz. The children were instructed to attain both the imposed amplitude and frequency. By focusing on how local parameter errors changed from one movement to the next, exploitation of biomechanics when the children respected the inverse relationship between movement amplitude and frequency was distinguished from deliberate, cognitive control when the children succeeded in overriding the inverse relationship between movement amplitude and frequency. The results show that children, like adults, exploit biomechanics to a considerable extent. Coupling strength between the acoustic pacing signal and the pen-tip movements increased with age, whereas the temporal errors decreased. The study shows that preparatory writers can pursue multiple movement goals simultaneously at lower speeds but at higher speeds their capacity to do so is reduced.  相似文献   

14.
The motor system composes complex actions by combining simpler submovements. This presumably involves sharing information about the progress of one submovement with the centres controlling another submovement, to ensure that the second happens in an appropriate relation to the first. This process is called coordination. In this paper Idiscuss evidence that coordinating actions indeed involves an active process of sharing information about the current state of movements. Coordination appears to be qualitatively different from the process of reacting to external stimuli. This may reflect the importance of predictive representations in coordination. Finally, the processes underlying coordination appear to be organized in a response-specific fashion, as a number of relatively independent circuits. The development and tuning of these circuits may, in part, be what makes an action "skilled".  相似文献   

15.
We examined the disruptive effects of stuttering on manual performance during simultaneous speaking and drawing tasks. Fifteen stuttering and fifteen non-stuttering participants drew continuous circles with a pen on a digitizer tablet under three conditions: silent (i.e., neither reading nor speaking), reading aloud, and choral reading (i.e., reading aloud in unison with another reader). We counted the frequency of stuttering events in the speaking tasks and measured pen stroke duration and pen stroke dysfluency (normalized jerk) in all three tasks. The control group was stutter-free and did not increase manual dysfluency in any condition. In the silent condition, the stuttering group performed pen movements without evidence of dysfluency, similar to the control group. However, in the reading aloud condition, the stuttering group stuttered on 12% of the syllables and showed increased manual dysfluency. In the choral reading condition stuttering was virtually eliminated (reduced by 97%), but manual dysfluency was reduced by only 47% relative to the reading aloud condition. Trials where more stuttered events were generally positively correlated with higher manual dysfluency. The results are consistent with a model in which episodes of stuttering and motor dysfluency are related to neural interconnectivity between manual and speech processes.  相似文献   

16.
Patients with Parkinson’s disease (PD) have difficulties in movement adaptation to optimize performance in novel environmental contexts such as altered screen cursor-hand relationships. Prior studies have shown that the time course of the distortion differentially affects visuomotor adaptation to screen cursor rotations, suggesting separate mechanisms for gradual and sudden adaptation. Moreover, studies in human and non-human primates suggest that adaptation to sudden kinematic distortions may engage the basal ganglia, whereas adaptation to gradual kinematic distortions involves cerebellar structures. In the present studies, participants were patients with PD, who performed center-out pointing movements, using either a digitizer tablet and pen or a computer trackball, under normal or rotated screen cursor feedback conditions. The initial study tested patients with PD using a cross-over experimental design for adaptation to gradual as compared with sudden rotated hand-screen cursor relationships and revealed significant after-effects for the gradual adaptation task only. Consistent with these results, findings from a follow-up experiment using a trackball that required only small finger movements showed that patients with PD adapt better to gradual as against sudden perturbations, when compared to age-matched healthy controls. We conclude that Parkinson’s disease affects adaptation to sudden visuomotor distortions but spares adaptation to gradual distortions.  相似文献   

17.
Our study addresses the following research questions: Are there differences between handwriting movements on paper and on a tablet computer? Can experienced writers, such as most adults, adapt their graphomotor execution during writing to a rather unfamiliar surface for instance a tablet computer?We examined the handwriting performance of adults in three tasks with different complexity: (a) graphomotor abilities, (b) visuomotor abilities and (c) handwriting. Each participant performed each task twice, once on paper and once on a tablet computer with a pen.We tested 25 participants by measuring their writing duration, in air time, number of pen lifts, writing velocity and number of inversions in velocity. The data were analyzed using linear mixed-effects modeling with repeated measures.Our results reveal differences between writing on paper and on a tablet computer which were partly task-dependent. Our findings also show that participants were able to adapt their graphomotor execution to the smoother surface of the tablet computer during the tasks.  相似文献   

18.
Successful performance of a goal-directed action requires the prospective actor to perceive the environment relative to their action capabilities and tailor their movements accordingly. The current study examined the roles of reach distance, object (power drill) weight, gender, discomfort, and muscle activation (anterior deltoid, upper trapezius, biceps, ventral and dorsal forearm) in determining the location of the transition between an arm-only and an arm-and-torso reach (preferred critical boundary) during a seated reach task in which participants had to direct a power drill toward a target. Generalized Estimating Equations (GEE) used extrinsic (independent of the participant) and intrinsic measures (relative to the biodynamic properties of the participant) of reach distance and drill weight, discomfort judgments, and EMG integral recordings for the five muscles to identify factors that best predicted the type of reach used. GEE revealed that intrinsic measures of reach distance and drill weight were superior predictors compared to extrinsic measures. Discomfort judgment and upper trapezius activity were also significant predictors of the location of the preferred critical boundary.  相似文献   

19.
The purpose of this research was to investigate whether patients experiencing nonspecific complaints of the forearm caused by sustained use of the personal computer exhibit deviant movement strategies as compared to healthy participants. Patients (N=10) and controls (N=24) performed a graphical aiming task combined with an auditory memory task. Force production (pen pressure), kinematic- and performance variables were recorded. During a trial, the control group gradually increased pen pressure from the stationary phases to the dynamic phase. The patients increased their pen pressure much more abruptly and to such a degree that the final pressure during real-time movement far exceeded that of the controls. Memory load led to a greater increase of pen pressure from the stationary phase to the dynamic phase in the patient group. Patients further displayed longer reaction times. The results are discussed within the framework of our recent theory on the role of neuromotor noise in the regulation of task performance under conditions of stress.  相似文献   

20.
Motor learning plays an important role in the acquisition of new motor skills. In this study, we investigated whether repetition of a cognitive task promoted motor learning. Fifty-one young adults were assigned to either the early, late, or control groups. All participants completed a mouse tracking task in which they manipulated a mouse to track a moving target on a screen. The cursor was rotated 165° in the counterclockwise direction from the actual mouse position, requiring participants to learn how to use a new tool. To determine the task performance, we calculated the distance between the cursor and target position. In addition, to assess the effects of a cognitive task on the progress of motor learning, curve fitting of the learning curves was performed for the total distance. Experiments were conducted as per the following schedule: learning day 1 (L1), learning day 2 (L2: the day after learning day 1), retention day 1 (R1: 2 weeks after learning day 1), and retention day 2 (R2: 4 weeks after learning day 1). Participants underwent mouse tracking for 20 min on L1 and L2 and for 3 min on R1 and R2. As a cognitive task, we adopted the N-back task. The early or late group performed the N-back task for 20 min before performing motor tracking task on L1 or L2, respectively. The control group did not perform the N-back task. Based on curve fitting analysis, it was observed that the rate of change for motor learning in the early group was higher than that in the control group. The retention of motor learning did not differ between all groups. Our results indicate that the repetition of a cognitive task enhanced in the early phase of motor learning of the mouse tracking task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号