首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Previous research has demonstrated that the short-range process in apparent movement, as studied with random-dot cinematograms, exhibits global cooperativity; that is, computations performed by local elements interact nonlinearly and are pooled. Other research using displays containing extended contours has implicated the short-range process, but has never demonstrated global cooperativity. In the first of four experiments, it was shown that under certain conditions of presentation, a short-range motion percept exhibiting apparent global cooperativity can be obtained when collections of randomly located contours are rotated about the center of a display, despite the fact that the displacement of peripheral contours falls outside the normal limit of the short-range process. Experiments 2-4 were conducted to provide further evidence that the observed motion is short-range (i.e., it can be disrupted by illuminating the interstimulus interval or with dichoptic viewing) and that the percept is globally cooperative (i.e., masking the center of the display, where separations between corresponding elements across frames are smallest, results in a decline in the frequency of reports of the short-range percept). Control observations suggest that the effect produced with masks was not due to a decrease in the number of elements in the display. The argument that the display exhibits a short-range process with global cooperativity is further developed.  相似文献   

2.
Effects of luminance and contrast on direction of ambiguous apparent motion   总被引:1,自引:0,他引:1  
S M Anstis  G Mather 《Perception》1985,14(2):167-179
A study is reported of the role of luminance and contrast in resolving ambiguous apparent motion (AM). Different results were obtained for the short-range (SR) and the long-range (LR) motion-detecting processes. For short-range jumps (7.5 min arc), the direction of ambiguous AM depended on brightness polarity, with AM only from white to white and from black to black. But for larger jumps, or when an interstimulus interval (ISI) was introduced, AM was less dependent on polarity, with white often jumping to black and black jumping to white. Two potential AMs were pitted against each other, one carried by a light stimulus and the other by a dark stimulus. The stimulus whose luminance differed most from the uniform surround captured the AM. Visual response to luminance was linear, not logarithmic. When the stimulus was modified to give continuous AM in one direction it was followed by a negative aftereffect of motion only when the spatial displacement was 1 min arc. A larger displacement (10 min arc) gave good AM but no motion aftereffect. Thus only short-range motion adapts motion-sensitive channels.  相似文献   

3.
Craig JC 《Perception》2006,35(3):351-367
Previous studies have demonstrated that visual apparent motion can alter the judgment of auditory apparent motion. We investigated the effect of visual apparent motion on judgments of the direction of tactile apparent motion. When visual motion was presented at the same time as, but in a direction opposite to, tactile motion, accuracy in judging the direction of tactile apparent motion was substantially reduced. This reduction in performance is referred to as 'the congruency effect'. Similar effects were observed when the visual display was placed either near to the tactile display or at some distance from the tactile display (experiment 1). In experiment 2, the relative alignment between the visual and tactile directions of motion was varied. The size of the congruency effect was similar at 0 degrees and 45 degrees alignments but much reduced at a 90 degrees alignment. In experiment 3, subjects made confidence ratings of their judgments of the direction of the tactile motion. The results indicated that the congruency effect was not due to subjects being unsure of the direction of motion and being forced to guess. In experiment 4, static visual stimuli were shown to have no effect on the judgments of direction of the tactile stimuli. The extent to which the congruency effect reflects capture effects and is the result of perceptual versus post-perceptual processes is discussed.  相似文献   

4.
Thresholds for detecting movement direction were measured for two different types of dynamic dot display; first, one in which all dots moved upwards, and secondly, one in which half the dots moved upwards and half moved downwards. Direction sensitivity was found to be worse for the stimulus containing two simultaneous directions of motion than for the stimulus in one direction. These data are taken as evidence of some form of competition, or AND-NOT gating, between the outputs of direction-specific analysers during threshold determination.  相似文献   

5.
This article describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams V1----V2, V1----MT, and V1----V2----MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. The theory suggests that the static form system (Static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast and to direction-of-motion, whereas the motion form system (Motion BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast but sensitive to direction-of-motion. The theory is used to explain classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include beta motion, split motion, gamma motion and reverse-contrast gamma motion, delta motion, and visual inertia. Also included are the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size, various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form-color interactions; and binocular interactions of flashes to different eyes.  相似文献   

6.
Casco C  Ganis G 《Perception》1999,28(1):89-108
A series of experiments was conducted to determine whether apparent motion tends to follow the similarity rule (i.e. is attribute-specific) and to investigate the underlying mechanism. Stimulus duration thresholds were measured during a two-alternative forced-choice task in which observers detected either the location or the motion direction of target groups defined by the conjunction of size and orientation. Target element positions were randomly chosen within a nominally defined rectangular subregion of the display (target region). The target region was presented either statically (followed by a 250 ms duration mask) or dynamically, displaced by a small distance (18 min of arc) from frame to frame. In the motion display, the position of both target and background elements was changed randomly from frame to frame within the respective areas to abolish spatial correspondence over time. Stimulus duration thresholds were lower in the motion than in the static task, indicating that target detection in the dynamic condition does not rely on the explicit identification of target elements in each static frame. Increasing the distractor-to-target ratio was found to reduce detectability in the static, but not in the motion task. This indicates that the perceptual segregation of the target is effortless and parallel with motion but not with static displays. The pattern of results holds regardless of the task or search paradigm employed. The detectability in the motion condition can be improved by increasing the number of frames and/or by reducing the width of the target area. Furthermore, parallel search in the dynamic condition can be conducted with both short-range and long-range motion stimuli. Finally, apparent motion of conjunctions is insufficient on its own to support location decision and is disrupted by random visual noise. Overall, these findings show that (i) the mechanism underlying apparent motion is attribute-specific; (ii) the motion system mediates temporal integration of feature conjunctions before they are identified by the static system; and (iii) target detectability in these stimuli relies upon a nonattentive, cooperative, directionally selective motion mechanism that responds to high-level attributes (conjunction of size and orientation).  相似文献   

7.
The existence of a directional motion aftereffect (MAE) for long-range (LR) stroboscopic apparent motion (SAM) was examined with the use of a directionally ambiguous test stimulus. The spatial and temporal parameters were such that the LR, rather than the short-range, mechanism was likely to be implicated. MAEs were found for SAM, which were in the same direction, but somewhat weaker than those for a comparable stimulus in real motion. The MAEs for SAM were present only when good apparent motion was perceived, and could be shown also when only the unstimulated area between the two stroboscopic flashes was tested. The LR mechanism was further implicated, since the MAEs were also obtained under dichoptic adaptation conditions. It is concluded that the LR-motion mechanism does show a usual MAE under proper testing conditions.  相似文献   

8.
N E Scott-Samuel  R F Hess 《Perception》2001,30(10):1179-1188
The Ternus display is a moving visual stimulus which elicits two very different percepts, according to the length of the interstimulus interval (ISI) between each frame of the motion sequence. These two percepts, referred to as element motion and group motion, have previously been analysed in terms of the operation of a low-level, dedicated short-range motion process (in the case of element motion), and of a higher-level, attentional long-range motion process (in the case of group motion). We used a novel Ternus configuration to show that both element and group motion are, in fact, mediated solely by a process sensitive to changes in the spatial appearance of the Ternus elements. In light of this, it appears that Ternus displays tell us nothing about low-level motion processing, implying that previous studies using Ternus displays, for instance those dealing with dyslexia, require reinterpretation. Further manipulations of the Ternus display revealed that the orientation and spatial-frequency discrimination of the process underlying the analysis of Ternus displays is far worse than thresholds for spatial vision. We conclude that Ternus displays are analysed via a long-range motion, or feature-tracking, process, and that this process is distinct from spatial vision.  相似文献   

9.
Kitazaki M  Sato T 《Perception》2003,32(4):475-484
Attentional effects on self-motion perception (vection) were examined by using a large display in which vertical stripes containing upward or downward moving dots were interleaved to balance the total motion energy for the two directions. The dots moving in the same direction had the same colour, and subjects were asked to attend to one of the two colours. Vection was perceived in the direction opposite to that of non-attended motion. This indicates that non-attended visual motion dominates vection. The attentional effect was then compared with effects of relative depth. Clear attentional effects were again found when there was no relative depth between dots moving in opposite directions, but the effect of depth was much stronger for stimuli with a relative depth. Vection was mainly determined by motion in the far depth plane, although some attentional effects were evident even in this case. These results indicate that attentional modulation for vection exists, but that it is overridden when there is a relative depth between the two motion components.  相似文献   

10.
Ito H 《Perception》2003,32(3):367-375
The Pulfrich effect yields a perceived depth for horizontally moving objects but not for vertically moving ones. In this study the Pulfrich effect was measured by translating oblique lines seen through a circular window, which made motion direction ambiguous. Overlaying random dots that moved horizontally, vertically, or diagonally controlled the perceptual motion direction of the lines. In experiment 1, when the lines were seen to move horizontally, the effect was strongest in spite of the same physical motion of the lines. Experiment 2 was performed to test the above conditions again, excluding the Pulfrich effect of the dots on the depth of the lines. The overlaid dots were presented to one eye only. The result showed that the Pulfrich effect of the lines was persistently strong in spite of the perceptual changes in motion direction. Experiment 3 also showed that the Pulfrich depth was independent of the perceived horizontal speed in a plaid display. The Pulfrich effect was determined by measuring the horizontal disparity component, independently of the perceived motion direction. These results demonstrate that the aperture problems in motion and stereopsis in the Pulfrich effect are solved independently.  相似文献   

11.
It has long been thought (e.g., Cavanagh & Mather, 1989) that first-order motion-energy extraction via space-time comparator-type models (e.g., the elaborated Reichardt detector) is sufficient to account for human performance in the short-range motion paradigm (Braddick, 1974), including the perception of reverse-phi motion when the luminance polarity of the visual elements is inverted during successive frames. Human observers’ ability to discriminate motion direction and use coherent motion information to segregate a region of a random cinematogram and determine its shape was tested; they performed better in the same-, as compared with the inverted-, polarity condition. Computational analyses of short-range motion perception based on the elaborated Reichardt motion energy detector (van Santen & Sperling, 1985) predict, incorrectly, that symmetrical results will be obtained for the same- and inverted-polarity conditions. In contrast, the counterchange detector (Hock, Schöner, & Gilroy, 2009) predicts an asymmetry quite similar to that of human observers in both motion direction and shape discrimination. The further advantage of counterchange, as compared with motion energy, detection for the perception of spatial shape- and depth-from-motion is discussed.  相似文献   

12.
P. McLeod 《Visual cognition》2013,21(4):363-392
Following bilateral extrastriate damage to areas that include the suspected human homologue of V5/MT, the patient LM has a specific deficit in processing moving stimuli. She has difficulty detecting the movement or coding the velocity of single moving dots. Nevertheless, we find that she can report human actions in Johansson “biological motion ”; displays. This requires the accurate coding of the direction and velocity of many moving dots. The implication is that structure can be extracted from motion in regions of visual cortex other than those traditionally associated with motion processing. However, she cannot report the spatial disposition of the actors whose actions she has recognized, not their movement in depth relative to her. A possible interpretation is that coding in these additional regions is primarily object-centred. Adding a small number of random stationary “noise” dots to the display prevents her from identifying the actions, suggesting that segregation by motion is implemented within the traditional movement areas.  相似文献   

13.
I P Howard  T Heckmann 《Perception》1989,18(5):657-665
In studies where it is reported that illusory self-rotation (circular vection) is induced more by peripheral displays than by central displays, eccentricity may have been confounded with perceived relative distance and area. Experiments are reported in which the direction and magnitude of vection induced by a central display in the presence of a surround display were measured. The displays varied in relative distance and area and were presented in isolation, with one moving and one stationary display, or with both moving in opposite directions. A more distant display had more influence over vection than a near display. A central display induced vection if seen in isolation or through a 'window' in a stationary surrounding display. Motion of a more distant central display weakened vection induced by a nearer surrounding display moving the other way. When the two displays had the same area their effects almost cancelled. A moving central display nearer than a textured stationary surround produced vection in the same direction as the moving stimulus. This phenomenon is termed 'contrast-motion vecton' because it is probably due to illusory motion of the surround induced by motion of the centre. Unequivocal statements about the dominance of an eccentric display over a central display cannot be made without considering the relative distances and sizes of the displays and the motion contrast between them.  相似文献   

14.
Calabro FJ  Vaina LM 《Perception》2006,35(9):1219-1232
Transparent motion stimuli allow us to investigate how visual motion is processed in the presence of multiple sources of information. We used stereo random-dot kinematograms to determine how motion processing is affected by the difference in direction and depth of two overlapping motion components. Observers judged whether a noise dot display contained one or two directions of motion. For all disparity differences, performance did not change among angles greater than 60 degrees, but the ability to detect transparent motion fell dramatically as the direction difference decreased below 60 degrees. When a disparity difference was added between the two motion components, detection became easier. We compared these results to an ideal-observer model limited by stimulus uncertainty and low-level sources of internal noise. The resulting measure of efficiency--the ratio of human to model performance--reflects changes in how motion stimuli are being processed. A decrease of both the direction and disparity differences had the effect of decreasing efficiency. These results suggest that the mechanism processing transparent motion may implement a smoothness constraint that tends to combine similar motions into a single percept.  相似文献   

15.
The maximum displacement at which directional motion can be seen, known as dmax, has been said to define the spatial limits of the short-range motion system. Turano and Pantle (1985) used duration of motion aftereffect (MAE) to estimate the spatial limit of the short-range system, the assumption that dmax (a direct measure of motion perception) and MAE (an indirect measure) are equivalent indices of the same underlying perceptual process. In a series of four experiments, we examined this assumption by measuring dmax and duration of MAE across a range of displacements, stimulus waveforms (sine- or square-wave gratings), and spatial frequencies. We found that dmax and duration of MAE were affected differently by changes in the same variables. Therefore, we concluded that the two indices cannot be regarded as equivalent measures of the spatial limits of the short-range process. Two novel effects that separated MAE from motion detection are described, and suggestions for exploring them are outlined.  相似文献   

16.
Previous work has demonstrated that the ability to keep track of moving objects is improved when the objects have unique visual features, such as color or shape. In the present study, we investigated how orientation information is used during the tracking of objects. Orientation is an interesting feature to explore in moving objects because it is directional and is often informative of the direction of motion. Most objects move forward, in the direction they are oriented. In the present experiments, participants tracked a subset of moving isosceles triangles whose orientations were constant, related, or unrelated to the direction of motion. In the standard multiple object tracking (MOT) task, tracking performance improved when orientations were unique and remained constant, but not when orientation and direction of motion were aligned. In the target recovery task, in which MOT was interrupted by a brief blanking of the display, performance did improve when orientation and direction were aligned. In the final experiment, results showed that orientation was not used before the blank to predict future target locations, but was instead used after the blank. We concluded that people use orientation to compare a stored representation to target position for recovery of lost targets.  相似文献   

17.
Horowitz TS  Wolfe JM  DiMase JS  Klieger SB 《Perception》2007,36(11):1624-1634
Can we search for items based on their type of motion? We consider here visual search based on three types of motion: (i) ballistic motion, in which objects move in a straight line until they encounter a display boundary; (ii) random-walk motion, in which objects change direction randomly; (iii) composite motion, in which objects move with random fluctuations around a generally ballistic trajectory. The asymmetric pattern of search efficiency can be explained by assuming that visual attention is guided by processes sensitive to the presence of linear motion and change in motion. The results do not reveal a more sophisticated ability to segregate items based on the nature of their motion.  相似文献   

18.
The presence of information in a visual display does not guarantee its use by the visual system. Studies of inversion effects in both face recognition and biological-motion perception have shown that the same information may be used by observers when it is presented in an upright display but not used when the display is inverted. In our study, we tested the inversion effect in scrambled biological-motion displays to investigate mechanisms that validate information contained in the local motion of a point-light walker. Using novel biological-motion stimuli that contained no configural cues to the direction in which a walker was facing, we found that manipulating the relative vertical location of the walker's feet significantly affected observers' performance on a direction-discrimination task. Our data demonstrate that, by themselves, local cues can almost unambiguously indicate the facing direction of the agent in biological-motion stimuli. Additionally, we document a noteworthy interaction between local and global information and offer a new explanation for the effect of local inversion in biological-motion perception.  相似文献   

19.
The effects of surface markings on perceived motion direction were examined for a rotating sphere in a structure-from-motion display. The markings were dot patterns representing separate line segments or intersecting line segments (crosses) covering the surface of the sphere. The orientation of the surface markings and their intersection angles affected the perceived direction of motion, suggesting that the markings were not interpreted as geodesics or planar cuts on the surface. The perceived direction of motion was biased towards the mean orientation of the markings over the visible area of the surface. A similar bias was observed for translating planar stimuli covered with crosses, suggesting that the bias is not specific to curved surfaces or motion in depth. The deviation between the simulated motion direction and the external horizontal and vertical axes also affected the perceived motion direction. These results suggest that the average orientation of surface contours with respect to an external reference frame influences the perceived direction of motion.  相似文献   

20.
Different patterns of figures moving behind a window were viewed by subjects while fixating a point 8.5–11° visual angle NW of the display. With prolonged viewing and small figures, the motion appeared to stop completely. With moving figures which stretched the whole way across the field, perpendicular to the direction of motion, a pulsating or wave motion was experienced. A reduction in the number of moving figures was also reported with all the patterns. When the stimulus motion was stopped, the expected after effect of motion in the opposite direction was usually experienced, although in many cases the stopping of the stimulus motion led to an immediate disappearance of the stimulus figures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号