首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
颜军  陈爱国  胡茂志 《心理学报》2008,40(6):717-722
为了探讨慢性心理应激对热休克蛋白70(Hsp70)、淋巴细胞的凋亡及其两者之间关系的影响,将实验SD大鼠分为对照组、中等强度心理应激组和高强度心理应激组。分别对三组大鼠给予相应的干预3周,采用流式细胞仪定量检测各组大鼠外周血淋巴细胞Hsp70的表达水平和凋亡量。结果发现,与对照组比较,中等和高强度心理应激组淋巴细胞内Hsp70表达水平显著增加;中等强度心理应激组凋亡量增加但没有出现统计学意义,高强度心理应激组淋巴细胞凋亡显著增加;中等强度心理应激组的淋巴细胞Hsp70表达与凋亡量变化成显著正相关,高强度心理应激组两者变化成不显著正相关。研究结果提示心理应激能诱发淋巴细胞Hsp70表达和凋亡升高,且随心理应激强度增加,Hsp70表达升高趋势减缓、凋亡量增加加剧,最终造成机体免疫损伤加深  相似文献   

3.
The current study was conducted to determine the potential relationship between stress-induced corticosterone secretion and corticosteroid receptor mRNA levels after 5 days of intermittent stress. In particular, we were interested in the rate at which animals terminate a stress response, and how this termination may be altered by repeated stress. Adult male Sprague-Dawley rats were subjected to either 5 days of restraint stress or 5 days of an unpredictable stress paradigm. Restraint-stress induced corticosterone secretion was measured on Days 1 and 5 in both groups, and animals were killed on Day 6. Glucocorticoid receptor (GR), and mineralocorticoid (MR) mRNA levels were determined using in-situ hybridization techniques. Five days of restraint stress caused an habituation of the plasma corticosterone response to stress measured 60 and 90 min post-stress initiation; this pattern of corticosterone secretion was not observed in the animals subjected to unpredictable stress. Five days of either stress paradigm did not alter MR mRNA levels measured within the hippocampus or GR mRNA levels within the hippocampus or the medial parvocellular division of the paraventricular nucleus of the hypothalamus (mpPVN). However, an individual's GR mRNA levels measured within the CA1/2 region of the hippocampus and the mpPVN were significantly correlated with the degree of habituation of the corticosterone response to stress measured on Day 5. This suggests that an increase in the rate of termination of the stress response and levels of GR within the hippocampus and mpPVN may be functionally related.  相似文献   

4.
5.
Activation of the in vivo stress response can facilitate antibacterial host defenses. One possible mechanism for this effect is stress-induced release of heat shock protein 72 (Hsp72) into the extracellular environment. Hsp72 is a ubiquitous cellular protein that is up-regulated in response to cellular stress, and modulates various aspects of immune function including macrophage inflammatory/bactericidal responses and T-cell function when found in the extracellular environment. The current study tested the hypothesis that in vivo extracellular Hsp72 (eHsp72) at the site of inflammation contributes to stress-induced restricted development of bacteria, and facilitated recovery from bacteria-induced inflammation, and that this effect is independent of alpha beta (αβ) T cells. Male F344 rats were exposed to either inescapable electrical tail-shocks or no stress, and subcutaneously injected with Escherichia coli (ATCC 15746). The role of eHsp72 was investigated by Hsp72-immunoneutralization at the inflammatory site. The potential contribution of T cells was examined by testing male athymic (rnu/rnu) nude rats lacking mature αβ T cells and heterozygous thymic intact control (rnu/+) rats. The results were that stressor exposure increased plasma concentrations of eHsp72 and facilitated recovery from bacterial inflammation. Immunoneutralization of eHsp72 at the inflammatory site attenuated this effect. Stressor exposure impacted bacterial inflammation and eHsp72 equally in both athymic and intact control rats. These results support the hypothesis that eHsp72 at the site of inflammation, and not αβ T cells, contributes to the effect of stressor exposure on subcutaneous bacterial inflammation.  相似文献   

6.
A novel method to measure oxidative stress resulting from exhaustive exercise in rats is presented. In this new procedure we evaluated the erythrocyte antioxidant enzymes, catalase (CAT) and glutathione reductase (GR), the plasma oxidative attack markers, reactive carbonyl derivatives (RCD) and thiobarbituric reactive substances (TBARS). Muscular tissue damage was evaluated by monitoring plasma creatine kinase (CK) and plasma taurine (Tau) concentrations. Also, we monitored total sulphydryl groups (TSG) and uric acid (UA), and the level of the 70 kDa heat shock protein (HSP70) in leukocytes as a marker of oxidative stress. In the study we found a correspondence between erythrocyte CAT and GR activities and leukocyte HSP70 levels, principally 3 h after the acute exercise, and this suggested an integrated mechanism of antioxidant defense. The increase in levels of plasma Tau was coincident with the increasing plasma levels of CK and TBARS, principally after two hours of exercise. Thus tissue damage occurred before the expression of any anti-oxidant system markers and the monitoring of Tau, CK or TBARS may be important for the estimation of oxidative stress during exhaustive exercise. Furthermore, the integrated analyses could be of value in a clinical setting to quantify the extent of oxidative stress risk and reduce the need to perform muscle biopsies as a tool of clinical evaluation.  相似文献   

7.
The anterior ventral third ventricle (AV3V) region of the brain contains high concentrations of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that are important in the maintenance of body fluid and electrolyte balance as well as other physiological processes. Daily intracerebroventricular pulse injections of MR antisense oligonucleotides significantly suppressed deoxycorticosterone acetate (DOCA) induced salt appetite in a dose-related manner. Similar administration of GR antisense or scrambled/sense oligonucleotide into the third ventricle failed to inhibit salt appetite. Salt appetite aroused after adrenalectomy was not suppressed by MR antisense oligonucleotide treatments but was suppressed by an antisense oligonucleotide directed against the angiotensin II AT1 receptor subtype. Receptor binding analysis demonstrated that MR and GR oligonucleotide treatments each reduced their respective receptor subtypes. Finally, although GR antisense oligonucleotide treatment was ineffective in suppressing DOCA-induced salt appetite, this treatment did increase stress induced corticosterone release as well as delayed the recovery of corticosterone to basal levels after stress.  相似文献   

8.
Corticosteroid receptors are critical for the maintenance of homeostasis after both psychological and physiological stress. To understand the different roles and interactions of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) during stress, it is necessary to dissect the role of corticosteroid signaling at both the system and sub-system level. A variety of GR transgenic mouse lines have recently been used to characterize the role of GR in the CNS as a whole and particularly in the forebrain. We will describe both the behavioral and cellular/molecular implications of disrupting GR function in these animal models and describe the implications of this data for our understanding of normal endocrine function and stress adaptation. MRs in tight epithelia have a long established role in sodium homeostasis. Recently however, evidence has suggested that MRs in the limbic brain also play an important role in psychological stress. Just as with GR, targeted mutations in MR induce a variety of behavioral changes associated with stress adaptation. In this review, we will discuss the implications of this work on MR. Finally, we will discuss the possible interaction between MR and GR and how future work using double mutants (through conventional means or virus based gene alteration) will be needed to more fully understand how signaling through these two steroid receptors provides the adaptive mechanisms to deal with a variety of stressors.  相似文献   

9.
Stress can disrupt endocrine signalling in the male reproductive axis through high concentrations of glucocorticoids, the hallmark of stress. Our previous work revealed that a stress level of exogenous glucocorticoids could induce apoptosis of rat Leydig cells, which are the primary source of testosterone. The aim of this study was to investigate whether stress can induce apoptosis in rat Leydig cells in vivo and, if so, whether the process is the result of a direct effect of glucocorticoids. In a chronically stressed rat model, serum corticosterone concentration was increased significantly whereas serum testosterone was decreased. The frequency of apoptotic Leydig cells in stressed rats was also increased. Adrenalectomised rats subjected to chronic stress showed an elevated serum testosterone, while the apoptotic frequency of Leydig cells was not increased. It was established that glucocorticoid-induced Leydig cell apoptosis is mediated by glucocorticoid receptors (GRs), which translocate from cytoplasm to nucleus. Adenovirus microRNA-induced downregulation of GR expression in vitro alleviated the corticosterone-induced increase in apoptosis of Leydig cells. These results indicate that the stress-induced increase in corticosterone secretion resulted in apoptosis in rat Leydig cells in vivo, and thereby decreased testosterone synthesis.  相似文献   

10.
OBJECTIVE: The goal of this study was to examine the impact of episodic stress and chronic interpersonal stress on indices of HPA regulation. To explore the potential downstream consequences of altered HPA dynamics, the authors also assessed indicators of metabolic control and systemic inflammation. DESIGN: One hundred four medically healthy women between the ages of 15 and 19 participated. Following an in-depth interview of life stress, a sample of blood was drawn through antecubital venipuncture. Over the course of the next 2 days, participants gathered salivary cortisol samples. MAIN OUTCOME MEASURES: Cortisol morning response, cortisol daily output, glucocorticoid receptor (GR) mRNA, C-reactive protein (CRP), insulin, and glucose. RESULTS: The simple presence of episodic stress or chronic interpersonal stress was not reliably associated with cortisol output, GR mRNA, insulin, or glucose. When women were exposed to an episodic stressor in the midst of chronic stress they showed increased cortisol output and reduced expression of GR mRNA. By contrast, when women had low levels of chronic stress, episodic events were associated with decreased cortisol output and increased GR mRNA. Episodic and chronic stress also interacted to predict CRP, but not insulin or glucose. CONCLUSIONS: The impact of episodic stress is accentuated in the midst of chronic interpersonal stress and diminished in its absence. Simultaneous exposure to episodic and chronic stress may create wear and tear on the body, whereas exposure to episodic stress in the context of a supportive environment may toughen the body, protecting it against subsequent stressors.  相似文献   

11.
Rats exposed to inescapable heat stress maintained a controlled hyperthermia while increasing heat loss by cutaneous vasodilatation and by grooming behavior. In nonpregnant rats, the evaporation of saliva groomed onto the body surfaces increased exponentially as a function of ambient temperature above 36 degrees C. This was associated with a decrease in the body temperature threshold for salivary secretion from the submaxillary gland, which then began at approximately the same body temperature as cutaneous vasodilatation. In addition, the pregnant rats maintained a lower level of controlled hyperthermia during heat stress than did nonpregnant rats. This appeared to result from a decreased production of metabolic heat, reduced insulation on the ventral surface, and an increased motivation to keep cool during heat stress. These changes met the increased need for thermolysis during pregnancy and provided for thermal homeostasis both in the pregnant rat and in the unborn fetuses.  相似文献   

12.
13.
Long-term adrenalectomy (ADX) is known to result in apoptosis within the dentate gyrus of the rat hippocampus. While the underlying mechanism is still unclear, adrenal steroids appear to play a pivotal role in granule cell survival, as administration of the mineralocorticoid receptor (MR) agonists, corticosterone and aldosterone, to ADX rats results in protection against the ADX-induced effect. The consequence of administration of the glucocorticoid receptor (GR) agonists, dexamethasone and RU28362, however, is less clear, and either complete or only partial protection for the ADX animal has been reported. This study investigated further the role played by GR in the degenerative process. After establishing the characteristics of seven-day ADX-induced apoptosis in the young male Wistar rat, the effect of chronically-implanted, subcutaneous pellets containing various doses of dexamethasone and corticosterone, on ADX-induced apoptosis was studied. Both high and low doses of corticosterone were found to be protective. In contrast to some other studies, however, neither dose of dexamethasone had any obvious protective effect and rather seemed to increase apoptosis in dentate gyrus of intact animals. Intracerebroventricular infusion of dexamethasone for seven days was also found to be ineffective in preventing apoptosis, demonstrating that it is occupation of MR, rather than GR, which is crucial to dentate gyrus granule cell survival.  相似文献   

14.
Corticosteroid effects on cognitive abilities during behavioral adaptation to stress are mediated by two types of receptors. While the glucocorticoid receptor (GR) is mainly involved in the consolidation of memory, the mineralocorticoid receptor (MR) mediates appraisal and initial responses to novelty. Recent findings in humans and mice suggest that under stress, the MR might be involved in the use of different learning strategies. Here, we used male mice lacking the MR in the forebrain (MR(CaMKCre)), which were subjected to 5-10 min acute restraint stress, followed 30 min later by training trials on the circular hole board. Mice had to locate an exit hole using extra- and intra-maze cues. We assessed performance and the use of spatial and stimulus-response strategies. Non-stressed MR(CaMKCre) mice showed delayed learning as compared to control littermates. Prior stress impaired performance in controls, but did not further deteriorate learning in MR(CaMKCre) mice. When stressed, 20-30% of both MR(CaMKCre) and control mice switched from a spatial to a stimulus-response strategy, which rescued performance in MR(CaMKCre) mice. Furthermore, MR(CaMKCre) mice showed increased GR mRNA expression in all CA areas of the hippocampus and an altered basal and stress-induced corticosterone secretion, which supports their role in the modulation of neuroendocrine activity. In conclusion, our data provide evidence for the critical role of MR in the fast formation of spatial memory. In the absence of forebrain MR spatial learning performance was under basal circumstances impaired, while after stress further deterioration of performance was rescued by switching behavior increasingly to a stimulus-response strategy.  相似文献   

15.
16.
Clinical studies have demonstrated an impairment of glucocorticoid receptor (GR)-mediated negative feedback on the hypothalamic--pituitary--adrenal (HPA) axis in patients with major depression (GR resistance), and its resolution by antidepressant treatment. Interestingly, a number of studies have also demonstrated that GR function is reduced in vitro, in peripheral tissues of depressed patients, as shown by a decreased sensitivity to the effects of glucocorticoids on immune and metabolic functions. This paper reviews the in vitro studies that have examined GR function in patients with major depression, and the possible molecular mechanisms involved in GR resistance. Since several studies have demonstrated similar regulation of GR in the brain and in peripheral tissues in humans, and given limited access to brain GR in clinical populations, this review claims that in vitro studies are of particular relevance to understand the molecular mechanisms underlying GR abnormalities in patients with major depression and its regulation by antidepressant treatment.  相似文献   

17.
Exposure to acute stress alters cognition; however, few studies have examined the effects of acute stress on executive functions such as behavioral flexibility. The goal of the present experiments was to determine the effects of acute periods of stress on two distinct forms of behavioral flexibility: set-shifting and reversal learning. Male Sprague-Dawley rats were trained and tested in an operant-chamber-based task. Some of the rats were exposed to acute restraint stress (30 min) immediately before either the set-shifting test day or the reversal learning test day. Acute stress had no effect on set-shifting, but it significantly facilitated reversal learning, as assessed by both trials to criterion and total errors. In a second experiment, the roles of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the acute-stress-induced facilitation of reversal learning were examined. Systemic administration of the GR-selective antagonist RU38486 (10 mg/kg) or the MR-selective antagonist spironolactone (50 mg/kg) 30 min prior to acute stress failed to block the facilitation on reversal learning. The present results demonstrate a dissociable effect of acute stress on set-shifting and reversal learning and suggest that the facilitation of reversal learning by acute stress may be mediated by factors other than corticosterone.  相似文献   

18.
Brief neonatal handling permanently alters hypothalamic-pituitary-adrenal axis function resulting in increased ability to cope with stress. Since stress is known to affect cognitive abilities, in the present study we investigated the effect of brief (15 min) handling on learning and memory in the Morris water maze, following exposure to an acute restraint stress either before training or recall. Exposure of non-handled rats to the acute stress prior to training resulted in quicker learning of the task, than in the absence of the stressor. When acute stress preceded acquisition, male handled rats showed an overall better learning performance, and both sexes of handled animals were less impaired in the subsequent memory trial, compared to the respective non-handled. In addition, the number of neurons immunoreactive for GR was higher in all areas of Ammon's horn of the handled rats during the recall. In contrast, the number of neurons immunoreactive for MR was higher in the CA1 and CA2 areas of the non-handled males. When the acute restraint stress was applied prior to the memory test, neonatal handling was not effective in preventing mnemonic impairment, as all animal groups showed a similar deficit in recall. In this case, no difference between handled and non-handled rats was observed in the number of GR positive neurons in the CA2 and CA3 hippocampal areas during the memory test. These results indicate that early experience interacts with sex and acute stress exposure in adulthood to affect performance in the water maze. Hippocampal corticosterone receptors may play a role in determining the final outcome.  相似文献   

19.
A fundamental question in the neurobiology of cognition is how stress and glucocorticoids modify learning and memory processes. Why some individuals develop cognitive deficits after stress, while other individuals improve in cognitive performance under similar adverse conditions is still unresolved. To address these questions we focus on those issues. First, corticosterone, which appears to be the preferred glucocorticoid for the rodent and human brain, acts via brain mineralocorticoid (MR) and glucocorticoid receptors (GR) on the expression of networks of corticosteroid-responsive genes. Different effects are achieved by MR and GR activation. Second, the experimental context that determines the timing and the consequences of corticosterone action during the various stages of information processing is reviewed. Third, the genetic context and the environmental context are investigated. Using apolipoprotein E knockout (apoE0/0) mice we show that apoE (apoE4 is a genetic risk factor for Alzheimer's disease) is a candidate gene with an important function in shaping the cognitive outcome (genotype x environment interaction).  相似文献   

20.
Physical and psychological stressors not only enhance activity of the hypothalamo-pituitary-adrenocortical axis, but also cause oxidative damage by inducing an imbalance between the in vivo pro-oxidant and antioxidant status. The involvement of adrenal steroid stress hormones in oxidative damage associated with these stressors has not been extensively investigated. Therefore, this study was designed to probe any direct role of glucocorticoids on induction of oxidative processes by comparing the effects of low, intermediate and high doses of exogenously administered corticosterone, without other applied stressors, on a wide range of key components of the antioxidant defence system. The data presented here indicate a substantial decline in antioxidant defences by actions of corticosterone, evidenced by coordinate decreases in the activities in the brain, liver and heart of free-radical scavenging enzymes superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutathione reductase (GR), as well as the non-enzymatic antioxidants glutathione (GSH) and serum urate. Also, lipid peroxidation and protein carbonyl contents, oxidative stress markers, were found to be significantly increased in brain, liver and heart. The compromised in vivo antioxidant status was strikingly analogous to the deleterious effects of restraint stress, indicating a direct effect of stress hormones on induction of oxidative damage during physical or psychological stress. A dose-dependent decrease of SOD and CAT, and increase in protein oxidation was observed between the high (40 mg/kg) and low (10 mg/kg) doses of corticosterone. The findings have fundamental implications for oxidative stress as a major pathological mechanism in the maladaptation to chronic stress. Thus, the study suggests that stress hormones have a causal role in impacting oxidative processes induced during the adaptive response. This may hold important implications for pharmacological interventions targeting cellular antioxidants as a promising strategy for protecting against oxidative insults in various psychiatric and non-psychiatric conditions induced by physical or psychological stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号